注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)隨機平均法及其應(yīng)用(上冊 英文版)

隨機平均法及其應(yīng)用(上冊 英文版)

隨機平均法及其應(yīng)用(上冊 英文版)

定 價:¥218.00

作 者: 朱位秋,鄧茂林,蔡國強
出版社: 科學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787030816979 出版時間: 2025-06-01 包裝: 平裝
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  隨機平均法是研究非線性隨機動力學(xué)*有效且應(yīng)用*廣泛的近似 解析方法之一。《Stochastic Averaging Methods and Applications,Volume 1(隨機平均法及其應(yīng)用 上冊)》是專門論述隨機平均法的著作,介紹了隨機平均 法的基本原理,給出了多種隨機激勵(高斯白噪聲、高斯和泊松白噪 聲、分?jǐn)?shù)高斯噪聲、色噪聲、諧和與寬帶噪聲等)下多種類型非線性 系統(tǒng)(擬哈密頓系統(tǒng)、擬廣義哈密頓系統(tǒng)、含遺傳效應(yīng)力系統(tǒng)等)的 隨機平均法以及在自然科學(xué)和技術(shù)科學(xué)中的若干應(yīng)用,主要是近30 年 來浙江大學(xué)朱位秋院士團(tuán)隊與美國佛羅里達(dá)大西洋大學(xué)Y.K. Lin 院士 和蔡國強教授關(guān)于隨機平均法的研究成果的系統(tǒng)總結(jié)?!禨tochastic Averaging Methods and Applications,Volume 1(隨機平均法及其應(yīng)用 上冊)》論述深入 淺出,同時提供了必要的預(yù)備知識與眾多算例,以利讀者理解與掌握 《Stochastic Averaging Methods and Applications,Volume 1(隨機平均法及其應(yīng)用 上冊)》內(nèi)容。

作者簡介

暫缺《隨機平均法及其應(yīng)用(上冊 英文版)》作者簡介

圖書目錄

Contents
1 Introduction 1
References 8
2 Stochastic Processes 9
2.1 Fundamentals 9
2.1.1 Descriptions of Stochastic Processes 11
2.1.2 Stationarity and Ergodicity 13
2.1.3 Spectral Analysis 17
2.2 Gaussian Stochastic Processes 23
2.3 Markov Processes 24
2.3.1 Markov Processes and Chapman-Kolmogorov-Smoluwski Equation 24
2.3.2 Markov Diffusion Processes and Fokker–Planck-Kolmogorov (FPK) Equation 26
2.3.3 Wiener Processes and Gaussian White Noise 28
2.3.4 It? Stochastic Differential Equations 31
2.3.5 Responses of Systems Under Gaussian White-Noise Excitations 34
2.4 PoissonWhite Noise Processes 38
2.4.1 Poisson Processes 38
2.4.2 PoissonWhite Noise 39
2.4.3 Stochastic Differential-Integral Equation and FPK Equation 42
2.5 Fractional Gaussian Processes 49
2.5.1 Fractional Calculus 49
2.5.2 Fractional Brownian Motion 50
2.5.3 Fractional Gaussian Noises 52
2.5.4 Stochastic Integration with Respect to Fractional Brownian Motion and Fractional Stochastic Differential Equations 54
2.5.5 Response of Linear Systems Excited by Fractional Gaussian Noises 57
2.6 Colored Noises 61
2.6.1 Noises Generated from Linear Filters 62
2.6.2 Noises Generated from Nonlinear Filters 64
2.6.3 Randomized Harmonic Process71
References 74
3 Nonlinear Stochastic Dynamical Systems 77
3.1 Modeling of Nonlinear Stochastic Dynamical Systems 77
3.2 Hamiltonian Systems and Their Classification 80
3.2.1 Hamilton Equation 80
3.2.2 Poisson Bracket 84
3.2.3 Phase Flow 86
3.2.4 Canonical Transformation 87
3.2.5 Completely Integrable Hamiltonian System 88
3.2.6 Non-Integrable Hamiltonian System 93
3.2.7 Partially Integrable Hamiltonian System 94
3.2.8 Ergodicity of Hamiltonian Systems 95
3.2.9 Stochastically Excited and Dissipated Hamiltonian Systems 96
3.3 The Generalized Hamiltonian System and its Classification 98
3.4 Forces with Genetic Effects 104
3.4.1 Hysteretic Forces 104
3.4.2 Visco-Elastic Force 114
3.4.3 Damping Force with Fractional Derivative 118
References 120
4 Stochastic Averaging Methods of Single-Degree-Of-Freedom Systems 123
4.1 Stochastic Averaging Principles 124
4.2 Stochastic Averaging Methods of SDOF Systems 130
4.2.1 Stochastic Averaging of Amplitude Envelope 131
4.2.2 Stochastic Averaging of Energy Envelope 134
4.3 Systems Under Gaussian White Noise Excitations 138
4.3.1 Linear Restoring Force 138
4.3.2 Nonlinear Restoring Force 142
4.4 Systems Under Broad-Band Random Excitations 145
4.4.1 Linear Restoring Force 146
4.4.2 A Primary-Secondary System 148
4.4.3 Energy-Dependent White-Noise Approximation 153
4.4.4 Fourier-Expansion Scheme 155
4.4.5 Residual Phase Procedure 159
4.5 Viscoelastic Systems Under Broad-Band Excitations 167
4.5.1 Linear Restoring Force 168
4.5.2 Nonlinear Restoring Force 173
4.6 A System with Double-Well Potential 180
4.6.1 Deterministic System with Double-Well Potential 181
4.6.2 Stochastic Averaging 184
4.7 Systems Under Combined Random and Harmonic Excitations 190
4.8 Systems Under Poisson White Noise Excitations 200
4.8.1 Amplitude Envelope 201
4.8.2 Energy Envelope 207
4.9 Systems Excited by Fractional Gaussian Noises 210
References 216
5 Stochastic Averaging Methods of Quasi-Hamiltonian Systems Under Gaussian White Noise Excitations. 219
5.1 Quasi-Non-Integrable Hamiltonian Systems 220
5.2 Quasi-Integrable Hamiltonian Systems 232
5.2.1 Non-Internal Resonant Case 234
5.2.2 Internal Resonant Case 242
5.3 Quasi-Partially Integrable Hamiltonian Systems 249
5.3.1 Noninternal Resonance Case 251
5.3.2 Internal Resonant Case 256
5.4 Stationary Response of 2-DOF Vibration-Impact System 266
5.4.1 Exact Stationary Solution 268
5.4.2 Application of Stochastic Averaging Method of Quasi-Non-Integrable Hamiltonian Systems 269
5.4.3 Application of Stochastic Averaging Method of Quasi-Integrable Hamiltonian Systems 274
5.4.4 Combined Application of Both Stochastic Averaging Methods of Quasi-Non-Integrable and Quasi-Integrable Hamiltonian Systems 281
5.5 Quasi-Non-Integrable Hamiltonian Systems with Markov Jump Parameters 284
5.5.1 Single-DOF Systems 286
5.5.2 Multi-DOF Systems 294
References 302
6 Stochastic Averaging Methods of Quasi-Hamiltonian Systems Excited by Gaussian and PoissonWhite Noises 303
6.1 Quasi-Hamiltonian Systems Excited by Gaussian and Poisson White Noises 303
6.2 Quasi-Non-Integrable Hamiltonian Systems 306
6.2.1 Combined Gaussian and Poisson White Noise Excitations306
6.2.2 PoissonWhite Noise Excitation 318
6.3 Quasi-Integrable Hamiltonian Systems 330
6.3.1 Non-Internal Resonant Case 332
6.3.2 Internal Resonant Case 340
6.4 Quasi-Partially Integrable Hamiltonian Systems 357
6.4.1 Non-Internal Resonant Case 361
6.4.2 Internal Resonant Case 367
References 387
7 Stochastic Averaging Methods

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號