《Vehicle System Dynamics theoretical Modeling and Application(汽車系統(tǒng)動力學(xué)——理論建模與應(yīng)用)》通過大量的調(diào)研和素材搜集,跟蹤*新的行業(yè)發(fā)展現(xiàn)狀,結(jié)合作者在行業(yè)多年的教學(xué)科研經(jīng)歷,將*新的汽車操縱逆動力學(xué)、不充氣輪胎動力學(xué)、汽車動力學(xué)狀態(tài)和參數(shù)估計方法以及駕駛員-汽車閉環(huán)系統(tǒng)操縱動力學(xué)新方法、汽車垂向逆動力學(xué)、懸架控制等研究成果作為《Vehicle System Dynamics theoretical Modeling and Application(汽車系統(tǒng)動力學(xué)——理論建模與應(yīng)用)》的重點(diǎn)章節(jié)進(jìn)行介紹,*大程度的反映了當(dāng)前汽車系統(tǒng)動力學(xué)的前沿技術(shù)狀況和發(fā)展趨勢;另一方面,《Vehicle System Dynamics theoretical Modeling and Application(汽車系統(tǒng)動力學(xué)——理論建模與應(yīng)用)》將汽車系統(tǒng)動力學(xué)的知識點(diǎn)進(jìn)行了系統(tǒng)的梳理和分類,形成了具有高度體系化的框架結(jié)構(gòu),對于學(xué)生深入理解本領(lǐng)域的知識點(diǎn)起到了至關(guān)重要的作用。《Vehicle System Dynamics theoretical Modeling and Application(汽車系統(tǒng)動力學(xué)——理論建模與應(yīng)用)》豐富和提升廣大車輛工程專業(yè)本科生和研究生的知識面與能力,對于培養(yǎng)面向高級底盤控制和自動駕駛為目標(biāo)的汽車類人才具有重要積極的意義。
作者簡介
暫缺《汽車系統(tǒng)動力學(xué):理論建模與應(yīng)用(英文版)》作者簡介
圖書目錄
Contents Preface 1 Introduction 1 1.1 System and system dynamics 1 1.2 Structure and composition of vehicle systems 3 1.3 Research contents and methods of vehicle system dynamics 4 1.3.1 Research contents 4 1.3.2 Research methods 6 1.4 Theory and research methods of vehicle handling inverse dynamics 11 1.4.1 Principle of handling inverse dynamics 11 1.4.2 Modeling and solution of handling inverse dynamics 13 References 17 2 Mechanical properties of pneumatic and non-pneumatic tires 19 2.1 Construction of tires 19 2.1.1 Construction of the pneumatic tire 19 2.1.2 Construction of the non-pneumatic mechanical elastic safe wheel 19 2.2 Mechanical properties of the pneumatic tire 20 2.2.1 Coordinate system of the tire 20 2.2.2 Tire cornering phenomenon and lateral force-sideslip angle curve 21 2.2.3 Aligning torque 23 2.2.4 Typical mechanics model of the tire 25 2.3 Mechanical properties of NMESW 27 2.3.1 NMESW loading mode and working principle 27 2.3.2 Rolling mechanism of NMESW28 2.3.3 Cornering characteristics of NMESW 32 2.3.4 Camber and cornering characteristics of NMESW 34 References 38 3 Vehicle stability control and estimation of road adhesion coefficient based on vehicle longitudinal dynamics 39 3.1 Review on vehicle longitudinal dynamics 39 3.1.1 Significance of research on dynamic characteristics of vehicle longitudinal system 39 3.1.2 Basic problems in the study of dynamic characteristics of vehicle longitudinal system 40 3.2 Vehicle stability control system 40 3.2.1 Summarize 40 3.2.2 Basic principle 41 3.2.3 Control method 42 3.2.4 Dynamic model and simulation 44 3.3 Estimation of road adhesion coefficient based on longitudinal dynamics 49 3.3.1 Slip-slope road adhesion coefficient estimation method 49 3.3.2 Longitudinal force estimation 50 3.3.3 Slip estimation 53 3.3.4 Slip-slope estimation method based on RLS 54 3.3.5 Virtual test verification 56 References 64 4 Independent all-wheel drive distribution control and estimation of tire effective cornering stiffness based on vehicle lateral dynamics 66 4.1 Review of vehicle lateral system dynamics.67 4.1.1 Introduction of evaluation method development for vehicle lateral system dynamic characteristics.67 4.1.2 The significance of research on closed-loop lateral system dynamics 69 4.1.3 Basic problems in the vehicle lateral system dynamics 70 4.2 Independent all-wheel drive distribution control 71 4.2.1 Conventional four-wheel drive system 71 4.2.2 Differential-based torque distribution between left and right wheels 71 4.2.3 Active control of all-wheel torque 72 4.3 Estimation of tire effective cornering stiffness 73 4.3.1 Estimation of tire effective cornering stiffness based on the time rate of change of acceleration 73 4.3.2 Feasibility analysis of estimation method 77 4.3.3 Simulation test verification 79 References 84 5 Evaluation of active safety based on driver-vehicle closed-loop control system dynamics 85 5.1 Theoretical basis.85 5.1.1 Driver-vehicle-road closed-loop system model 85 5.1.2 Random processes 88 5.1.3 Kronecker algebra basis.89 5.1.4 Second moment technique 91 5.2 Response analysis method of driver-vehicle-road closed-loop control system 92 5.2.1 Existing precise integration algorithm.93 5.2.2 Extension of precise integration algorithms 94 5.2.3 Numerical simulation example 95 5.3 Evaluation index of vehicle active safety 98 5.3.1 Supplementary to the closed-loop individual evaluation indexes 98 5.3.2 Supplement to the open-loop individual evaluation indexes 100 5.3.3 Selection of comprehensive evaluation index and weighting coefficient 100 5.3.4 Correlation between closed-loop comprehensive evaluation index and open-loop compre-hensive evaluation index 101 5.3.5 Numerical simulation example 101 5.3.6 Conclusion 104 References 105 6 A new evaluation method for driver-vehicle closed-loop handling system dynamics 106 6.1 Maneuverability evaluation of the driver-vehicle closed-loop system with random road inputs 106 6.1.1 Driver-vehicle-road closed-loop system model with random road input 106 6.1.2 Self-spectral density of effective road input 109 6.1.3 Time domain analysis of driver-vehicle-road stochastic closed-loop system response 109 6.1.4 Numerical simulation example 111 6.1.5 Virtual input algorithm 113 6.1.6 Conclusion 116 6.2 Influence of driver’s dynamic characteristics on vehicle handling safety 116 6.2.1 Driver-vehicle-road stochastic closed-loop system model.117 6.2.2 General random perturbation method for response analysis of stochastic closed-loop system 120 6.2.3 The influence of driver’s dynamic characteristics on vehicle active safety 121 6.2.4 Numerical simulation exam